Equations and Constants

$$F = ma \quad P = F/A \quad P_{1}V_{1} = P_{2}V_{2} \text{ or } P_{i}V_{i} = P_{f}V_{f} \quad \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} \quad PV = nRT$$

$$D = \frac{MP}{RT} \quad P_{total} = P_{1} + P_{2} + \cdots \quad X_{x} = \frac{n_{x}}{n_{total}} \quad P_{soln} = X_{x}P_{x} \quad P_{total} = \sum_{i} X_{i}P_{i}$$

$$C_{gas} = k_{H}P_{gas} \quad u_{rms} = \sqrt{\frac{3RT}{M}} \quad \frac{u_{x}}{u_{y}} = \sqrt{\frac{M_{y}}{M_{x}}} \quad \frac{r_{x}}{r_{y}} = \sqrt{\frac{M_{y}}{M_{x}}} \quad P = \frac{nRT}{V - nb} - \frac{n^{2}a}{V^{2}}$$

$$\ln\left(\frac{P_{1}}{P_{2}}\right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) \quad \ln P = -\frac{\Delta H_{vap}}{RT} + Const$$

$$\pi = iMRT \quad \Delta T_{b} = iK_{b}m \quad \Delta T_{f} = iK_{f}m \quad R = 0.08206 \frac{L \cdot atm}{mol \cdot K} \quad R = 8.3145 \frac{J}{mol \cdot K}$$

H 1.008																	He 4.003
Li 6.941	Be 9.012											$\overset{5}{\mathrm{B}}_{_{10.811}}$	Č		8 0 15.999	9 F 18.998	Ne 20.180
11 Na 22.990	12 Mg 24.305											13 A1 _{26.982}	12.011 14 Si 28.086	15 P 30.974	16 S 32.066	17 Cl 35.453	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti	V 50.942	Cr 51.996	Mn 54.938	Fe 55.845	27 Co 58.933	28 Ni _{58.693}	Cu 63.546	Zn 65.39	31 Ga 69.723	32 Ge	33 As 74.922	34 Se _{78.96}	35 Br 79.904	36 Kr 83.30
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo _{95,94}	43 Tc	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd	49 In	50 Sn 118.710	51 Sb 121.760	52 Te	53 I 126.904	54 Xe
55 Cs 132.902	56 Ba	57 La	72 Hf	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os	77 Ir 192.217	78 Pt 195.078	79 Au 196.967	80 Hg	81 T1 204.383	82 Pb	83 Bi 208.980	84 Po	85 At	86 Rn
87 Fr	88 Ra (226)	89 Ac (227)	104 Rf (261)	Db (262)	106 Sg (263)	107 Bh	108 Hs	109 Mt (268)	DS (271)	111 Rg (272)		Uut	Uuq	Uup	. ,		

58 Ce	Pr 140.908	Nd 144.908	Pm (145)	Sm 150.36	63 Eu 151.964	64 Gd 157.25	Tb 158.925	$\overset{66}{\overset{162.50}{\text{Dy}}}$	Ho 164.930	68 Er 167.26	Tm 168.934	Yb 173.04	71 Lu 174.967
Th	Pa Pa 231.036	92 U 238.029		94 Pu	Am (243)	Cm (247)	97 Bk	$\operatorname{Cf}_{{}^{(251)}}^{98}$	99 Es	Fm (257)	$\mathop{\mathrm{Md}}_{\scriptscriptstyle{(258)}}^{101}$	No (259)	$\overset{103}{\operatorname{Lr}}_{\scriptscriptstyle{(262)}}$

Chemistry 1212	
Monday 30, 2012)
Exam #1	

Name____

Write very clearly and **show all of your work** for partial credit. A list of equations and constants as well as a periodic table are on the last two pages of your exam.

1.(20 points) Fill in the space with the correct response.

- (a) Which lattice possesses the largest number of atoms simple, body-centered, or face-centered cubic?
- (b) Name this law: $P_{\text{soln}} = X_{solvent} P_{solvent}^{\circ}$.

- (c) What type of intermolecular force leads to the high boiling point of water?
- (d) Circle the species which is **most** miscible with water.

HBr He CCl₄ CH₃COCH All the same

(e) Circle the gas which experiences the **strongest** intermolecular force.

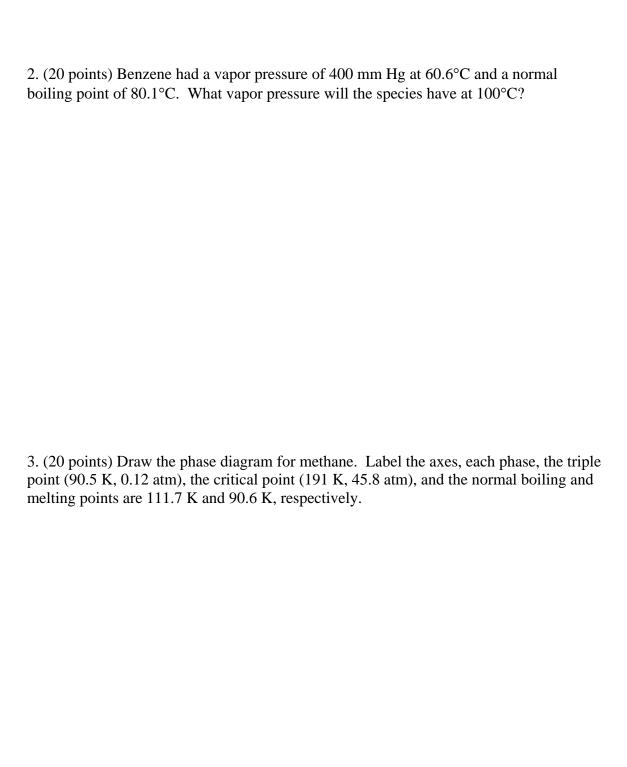
 $HF \qquad BF_3 \quad O_2 \quad CH_3CH_2CH_2CH_2CH_2OH$

(f) Circle the species with the **lowest** vapor pressure.

NO I_2 HF CH_4 All the same

(g) Circle the species which is has the highest viscosity.

 H_2S HF H_2O_2 NH₃ All the same


(h) Circle the species which has the <u>lowest</u> heat of vaporization.

H₂CO CH₃CH₃ CH₄ Xe All the same

(i) Circle the species which has the <u>largest</u> amount of hydrogen bonding.

H₂CO CH₃CH₃ CH₄ Xe All the same

(j) What is the ppm of a solution with 1L of water and 75mg of a solute?

4. (30 points) The boiling points of 1.000 m solutions of ammonium chloride, ammonium sulfate, and ammonium phosphate solutions are 101.0° C, 101.4° C, and 101.8° C atm, respectively. What are the van't Hoff factors for each of these salts? What are their percent dissociations? $k_b = 0.51 \frac{{}^{\circ} C \cdot kg}{mol}$

5. (10 points) What is the vapor pressure of a solution containing 20g of CaCl₂ and 100g of water? $P_{H_2O}^{\circ} = 23.8$ torr at 25°C